

Project 2 - The art of the Lynx

Project 2 starts where Project 1 ended. You are going to make more
geometric figures, this time much more efficiently, and use this extra
power to create geometrical and random art. We will introduce
procedures with inputs (variables), super and sub-procedures,
random, forever, conditional statements, stop, and buttons.

Start a new project from the Lynx home page, or from your My
Projects page. If you are already inside the Lynx editor, you
can choose New project from the Down from the cloud
button:

If there isn’t a turtle on the page, choose Turtle in the menu.

As a good habit, start by naming your project. Use a name that
makes sense for your project. You don't want 10 projects called My
Projects.

And again, save your project often. Simply click on this icon:

Page 22

Available in many sizes
In Project 1, if you wanted small, medium and large squares, you had
to create three procedures, with different names, one for each size.
There is a much better way to do this.

 Open the Procedures Pane and create this procedure:

to square :size
repeat 4 [forward :size right 90]
end

Now try to run square from the Command Centre:

square
square needs more inputs in square

This is an error message. You see, square now works like forward.
It also NEEDS a number to run. That number is called an input, or a
variable (like in math). Try this in the Command Centre:

pendown
square 10
square 50
square 100

Can you make this pattern using your
new square procedure?

Can you create another polygon
procedure with an input, to create
polygons of any size?

Page 23

IMPORTANT INFO!
To create a procedure with an input, add the input on the title
line, preceded by a colon (:size). It can be any name but

must be a single word. No space between the colon (:) and the
name (size)!

Next, you must use that same word (:size), again with the
colon, inside your procedure. If you run square 100, the

variable :size will work using the value 100.

Now that’s a SUPER procedure!
Remember the “squares” code from Project 1? This
challenge can be easier and more fun with the following
technique:

You already have a square :size procedure (see
previous page). Now create this one:

to manysquares :size
repeat 36 [square :size right 10]
end

What is going on here… The procedure manysquares USES the
procedure square. In this case, you can say that manysquares is a
SUPER procedure, and square, because it is used inside
manysquares, is called a SUB-procedure.

Clear the graphics and type this in the Command Centre:

setcolour 15

manysquares 80

Did you expect this?

Again… can you figure out why right 10 is included?
Remember the Total Turtle Trip?

Introducing… random
Random does only one thing. It returns a random number. It is like
choosing a number by chance.Try this in the Command Centre:

cc THIS MEANS CLEAR THE COMMAND CENTRE
repeat 100 [show random 80]
44 YOU WILL GET A HUNDRED NUMBERS LIKE THESE. YOUR NUMBERS WILL
6 CERTAINLY BE DIFFERENT. YOU MAY GET THE SAME NUMBER A FEW TIMES.
62
37…
In this case, random 80 returns
numbers between 0 and 79. You can
use that feature to make random art.

Page 24

Random number returns a
random number between 0

and that number minus one.
Random 100 returns a

number between 0 and 99.

Try this a few times in the Command Centre:

square random 100

Note: If the random number is very small, you may get a square that
is too small for you to see because the turtle is covering it. Run
square random 100 again.

Now try this. You know what manysquares 80 does, but what about
this instruction?

manysquares random 80

Yes, Lynx chooses a random size to be given to forward. Let’s add
random colours to the recipe.

So far, you have been using colour names with the command
setcolour (like setcolour 'red'). You can also use numbers!
Take a look at the colour chart in Appendix C. There are 140 colours
and each has a specific number.

Drag the turtle some other place on the page, and run these two lines:

setcolour random 140
manysquares random 80

Keep moving the turtle and run the same 2 lines a few times. Do you
get something like this?

If you drag the turtle around, remember that you can use penup
home pendown to bring it back to the centre of the page.

Page 25

All together now!
Using all the features above (variables, random, super procedure), you
can edit the manysquares procedure so it calls not one, but two sub-
procedures:

to manysquares :size
repeat 36 [changecolour square :size right 10]
end

to square :size
repeat 4 [forward :size right 90]
end

to changecolour
setcolour random 140
end

In the Command Centre type manysquares random 100. This
instruction uses the sub-procedure square and a random number for
the size, and it uses the sub-procedure changecolour to choose a
random colour.

Consider these other styles of “manysquares”. Can you
figure out what to change in the procedures? Make your
own!

I can go on forever like that
Look at the pattern on the right. Try to
understand or “deconstruct” what you see, try
to describe, in your own words, what you see
and how this was done.

Use the words random, square, forward,
right, setcolour and fill in your
description.

SPOILER ALERT: Work on this challenge in
your head. Don’t look at the next page yet.

Page 26

Your description could be something like: turn right a random amount,
move forward a random amount, draw a square, pick a random
colour, go inside the square and fill it… Do that forever.

You already have a square procedure. Create a procedure to go
inside the square and paint it with a random colour. Also create a
procedure to move to a random place on the page. Notice the spelling
of paint.inside. It is still just one word, with a dot, but without a
space, because a procedure name has to be one word. Instead of a
dot, you could use an underscore (_) to link the two words.
to square :size
repeat 4 [forward :size right 90]
end

to paint.inside
; pu before going inside and pd before filling
pu rt 20 fd 20 pd
setcolour random 140
setpensize 2 ; so fill doesn’t leak out
fill
end

to move
; must use penup before moving away
; then pendown when turtle arrives at new location
; random 360 goes in ANY direction (0 to 359)
pu rt random 360
fd random 300 pd
end

Try all these procedures one by one in the Command Centre:  
square 100 paint.inside move. Trying them individually
will reveal bugs, if any.

Then, create a super procedure that moves, makes a square, and
paints it FOREVER!

to pattern
setpensize 4
forever [move square 80 paint.inside]
end

Did you notice the plain English comments in the procedures
above? Any line that starts with a semi-colon (;), inside or

outside of a procedure, is a COMMENT.

Comments are a sign of good coders as they help you, and
others, understand what you are trying to do!

Page 27

Launch the procedure pattern from the Command Centre.

pattern

The forever primitive does exactly what you expect. You will
need this tool (the stopall button, to the left of the Command
Centre) to stop the action.

Spirals - I have my conditions!
Talking about going “forever”… Here’s a solution to the problem
“forever may be too much”.

Describe this in your own words, but DON’T use the
word “spiral”:

Your words might be something like: draw a line, turn,
draw a longer line, turn, draw a longer line… and so on.

This procedure starts doing the job: it draws a line once and turns at
an angle once. The procedure has two inputs (variables), one for
the :size, one for the :angle

to spiral :size :angle
forward :size
right :angle
end

Try this spiral procedure in the Command Centre. For the moment,
it does only one line at a time, so you will have to run it many times.
Use cg between each try.

cg setpensize 1 pd
spiral 20 120
spiral 30 120
spiral 40 120
spiral 50 120

You see where this is going? There must be a better way!

Let’s add some magic. One line is added to the procedure: the
procedure CALLS ITSELF, this time with a longer line (:size + 10),
and the same :angle.

to spiral :size :angle
forward :size
right :angle
spiral :size + 10 :angle
end

Page 28

A procedure that calls
itself is called a

RECURSIVE procedure.
It is extremely powerful.

Type this in the Command Centre.

spiral 0 120

Nice for a short while, but it goes overboard pretty fast, and you
get an error message. Use this to stop the procedure:

Why, or how, is it growing? Examine this special line (the recursive
call):

Let’s make this procedure stop by itself before the spiral grows too
large. Add this new line to the spiral procedure:

to spiral :size :angle
if :size > 200 [stop]
forward :size
right :angle
spiral :size + 10 :angle
end

HOW RECURSION WORKS
to spiral :size :angle
forward :size
right :angle
spiral :size + 10 :angle
end

to spiral 0 120
forward 0
right 120
spiral 0+10 :120
end

to spiral 10 120
forward 10
right 120
spiral 10+10 :120
end

to spiral 20 120
forward 20
right 120
spiral 20+10 :120
end

…

doing it, :size = 0

let’s do it again, with :size = 10

doing it, :size = 10

let’s do it again, 
with :size = 20

doing it,  
:size = 20
let’s do it again, 
with :size = 30

The “if” instruction is a STOP RULE, or a CONDITIONAL
STATEMENT. You need this to stop recursive procedures.

Page 29

Again, try these, and some of your own, from the Command Centre,
use cg between each try.

spiral 0 120
spiral 0 125 WHAT IS HAPPENING HERE?

spiral 0 115 AND HERE - CAN YOU EXPLAIN THIS?

spiral 0 90
spiral 0 95

Can you modify the procedure to change the maximum
size of the spiral (smaller, larger)?

Can you modify the procedure so the spiral grows faster or
slower (the amount that is added at each arm)?

HOW IF WORKS

IF :SIZE > 200 [STOP]

IF THIS-IS-TRUE THEN-DO-THIS

Page 30

Click me!
So far, you have been using the Command Centre to “try” things, and
that’s exactly what it is for. Soon, you will share your projects or use
them without a Command Centre. You need a way, INSIDE THE
PAGE, to trigger the action.

Introducing buttons. Imagine just dragging a turtle to a new location,
and just clicking on a button to get a spiral, right on that spot.

Click on the menu and choose Button.

A button, named nothing by default, appears
in the centre of the page. A button is just a
visible object that runs code when clicked.
Right-click on the button to open its dialog
box.

In the dialog box that appears, type Spiral as the label (it can be
anything as it is plain English and can be more than one word), and
choose new in the On Click menu. Click Apply.

Drag the corner of the button to resize it, and drag it by
its centre to relocate it to the lower part of the page.

This creates a new procedure such as this one in the Procedures
Pane.

to button1_click
; This is a comment to help you remember the purpose
of this procedure. Use an instruction like this when
the button is clicked:
; FORWARD 100
end

The grey lines, between the title line that starts with to and the end
line, are just comments in plain English - read and delete the grey
lines (but keep the title line and the end line). Instead, type
the instructions to be executed when you click on the turtle.

Page 31

For example:

to button1_click
setcolour random 140
spiral 0 123
end

Give it a try! Clean the page, drag the turtle around and click
on the button. Do that again. If there is one spiral you don’t
particularly like, click on the Undo button immediately after
the action.

When you are done with this project, save it - the
small red dot indicates that there is something to
save. When you leave your project, always
remember to save it first.

Then click on this icon to go back to My Projects.

More advanced ideas
SUPER AND SUB PROCEDURE CHALLENGE:
Can you figure out a super procedure house that uses the
sub-procedures square and triangle to create this?

PATTERN CHALLENGE:
You made this pattern earlier in this project.

Can you make four times that, deployed like a fan? Filled in too?

Page 32

SPIRAL CHALLENGE:
Here’s a gift - with a catch. It is yours if you can figure out what all
these variables do. The changes are highlighted.

to newspiral :size :angle :limit :increase
if :size > :limit [stop]
forward :size
right :angle
newspiral :size + :increase :angle :limit :increase
end

The good news is that this procedure can do any spiral you can think
of. The bad news is that it now requires FOUR inputs. Try these, use
cg as needed:

newspiral 0 125 200 2
newspiral 0 90 100 1
newspiral 0 90 200 10
newspiral 0 125 200 2

Curriculum Links for Ontario
C3.1 - Solve problems and create computational representations of
mathematical situations by writing and executing code, including
code that involves sequential, concurrent, repeating and nested
events.

C3.2 - Read and alter existing code, including code that involves
sequential, concurrent, repeating, and nested events, and describe
how changes to the code affect the outcomes.

Arts D1 - Creating and Presenting: apply the creative process to
produce a variety of two and three-dimensional art works, using
elements, principles and techniques of visual arts to communicate
feelings, ideas and understandings. 

GOOD TO KNOW

Note that the recursive line, the last line where the procedure
calls itself, must have the same number of inputs as found on
the title line. Four in this example. :size + :increase are

added together and constitute the first input.

Page 33

